Time-dependent low-rank approximation

Goal: Approximate given matrix $A(t)$ at every time $t \in [0, T]$ by rank-r matrix.

Motivation for taking time-dependence into account:

- If $\sigma_r(t) > \sigma_{r+1}(t)$ for all $t \in [0, T]$ then $\mathcal{T}_r(A(t))$ inherits smoothness of A wrt t [Baumann/Helmke’2003; Mehrmann/Rath’1993].
- Low-rank approximation at t_i may yield valuable information for low-rank approximation at nearby t_{i+1}.
- Allows us to work with tangent space (linear) instead of manifold (nonlinear). Much easier to impose additional structure.

More general setting: Approximate solution of ODE

$$\dot{A}(t) = F(A(t)), \quad A(0) = A_0.$$

by trajectory $X(t)$ in \mathcal{M}_r.

Main application for low-rank tensors: Discretized time-dependent high-dimensional PDEs.
Dynamical low-rank approximation

Recall definition of tangent vectors. If \(X : [0, T] \to \mathbb{R}^{m \times n} \) is a smooth curve in \(\mathcal{M}_r \) then

\[
\dot{X}(t) \in T_{X(t)} \mathcal{M}_r, \quad \forall t \in [0, T].
\]

Dynamical low-rank approximation: Given \(A : [0, T] \to \mathbb{R}^{m \times n} \), for every \(t \) construct \(X(t) \in \mathcal{M}_r \) satisfying

\[
\dot{X}(t) \in T_{X(t)} \mathcal{M}_r \quad \text{such that} \quad \| \dot{X}(t) - \dot{A}(t) \| = \text{min}!
\]

- Differential equation needs to be supplemented by initial value, say \(X(0) = \mathcal{T}_r(A(0)) \), which is in \(\mathcal{M}_r \) unless \(A(0) \) has rank less than \(r \).
- Hope: \(X \) stays close to \(A \) if \(A \) admits good rank-\(r \) approximation for all \(t \).
- For efficiency, aim at finding equivalent system of \(\approx \) \(\text{dim} \mathcal{M}_r \) differential equations.
Dynamical low-rank approximation

Counterexample to hope:

\[A(t) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 10^{-5}e^{t-1} & 0 \\ 0 & 0 & 10^{-5}e^{1-t} \end{pmatrix}, \quad t \in [0, 10]. \]

For \(r = 2 \), dynamical low-rank approximation yields

\[X(t) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 10^{-5}e^{1-t} \end{pmatrix}. \]

\[\| A(T) - X(T) \|_F = 10^4 \quad \text{but} \quad \| A(T) - T_r(A(T)) \|_F = 10^{-14}. \]

Dynamical low-rank approximation is “blind” to evolution of \(10^{-5}e^{t-1} \).

Can only hope for good approximation on short time intervals and if \(\sigma_r(t) > \sigma_{r+1}(t) \).
Dynamical low-rank approximation

\[\dot{X}(t) \in T_{X(t)} \mathcal{M}_r \] such that \[\| \dot{X}(t) - \dot{A}(t) \| = \min! \]
is equivalent to differential equation

\[\dot{X}(t) = P_{X(t)}(\dot{A}(t)), \tag{1} \]

where \(P_{X(t)} \) is the orthogonal projection onto \(T_{X(t)} \mathcal{M}_r \).

Will now omit dependence on time. Given \(X = USV^T \) with \(S \in \mathbb{R}^{r \times r} \) (not necessarily diagonal), \(U \in \text{St}(m, r) \) and \(V \in \text{St}(n, r) \), we have

\[
P_{X}(\dot{A}) = P_U \dot{A} P_V + P_U \dot{A} P_V + P_U \dot{A} P_{V}^{\perp} = U \dot{S} V^T + U \dot{S} V^T + U \dot{S} \tilde{V}^T,
\]

where

\[
\begin{align*}
\dot{S} &= U^T \dot{A} V \\
\dot{U} &= P_U \dot{A} V S^{-1} \\
\dot{V} &= P_V \dot{A}^T U S^{-T}.
\end{align*}
\]
Dynamical low-rank approximation

Dynamical low-rank approximation is equivalent to system of differential equations

\[
\begin{align*}
\dot{S} &= U^T \dot{AV} \\
\dot{U} &= P_U \dot{AV} S^{-1} \\
\dot{V} &= P_V \dot{A}^T US^{-T}
\end{align*}
\]

with initial values \(S(0) = S_0 \in \mathbb{R}^{r \times r}, U(0) = U_0 \in \text{St}(m, r), \)
\(V(0) = V_0 \in \text{St}(n, r). \)

Remarks:

- \(\dot{U} \in T_U \text{St}(m, r) \) and thus \(U \) stays in \(\text{St}(m, r) \); \(\dot{V} \in T_V \text{St}(n, r) \) and thus \(V \) stays in \(\text{St}(n, r) \). This can be preserved using geometric integration [Hairer/Lubich/Wanner’2006] or combining standard integrators with retractions.

- Step size control should aim at controlling error for \(USV^T \) and not for individual factors

- Presence of \(S^{-1} \) makes differential equations very stiff for ill-conditioned \(S \) (\(\sigma_r \) close to zero); results in small step sizes of explicit integrators.
Dynamical low-rank approximation

Error bound from Theorem 5.1 in [Koch/Lubich’2007].

Theorem

Suppose that for \(t \in [0, T] \) we have

- \(\sigma_r(A(t)) > \sigma_{r+1}(A(t)); \)
- \(\|A(t) - \mathcal{T}_r(A(t))\|_F \leq \rho / 16 \) with \(\rho = \min_{t \in [0, T]} \sigma_r(A(t)). \)

Then, with \(X(0) = \mathcal{T}_r(A(0)) \), we have

\[
\|X(t) - \mathcal{T}_r(A(t))\|_F \leq 2\beta e^{\beta t} \int_0^t \|A(s) - \mathcal{T}_r(A(s))\|_F \, ds
\]

where \(\beta = 8\mu / \rho \).
Dynamical low-rank approximation

Extension to dynamical system \(\dot{A} = F(A) \) with \(F : \mathbb{R}^{m \times n} \to \mathbb{R}^{m \times n} \).

Dynamical low-rank approximation: Construct \(X(t) \in \mathcal{M}_r \) satisfying

\[
\dot{X}(t) \in T_{X(t)}\mathcal{M}_r \quad \text{such that} \quad \|\dot{X}(t) - F(X(t))\| = \min!
\]

Equivalent to dynamical system

\[
\dot{X}(t) = P_{X(t)}(F(X(t))).
\]

Equivalent to

\[
\begin{align*}
\dot{S} &= U^T F(X(t)) V \\
\dot{U} &= P_{U}^\bot F(X(t)) VS^{-1} \\
\dot{V} &= P_{V}^\bot F(X(t))^T US^{-T}
\end{align*}
\]

EFY. Consider the linear matrix differential equation

\[
\dot{A} = LA + AR
\]

for \(L(t) \in \mathbb{R}^{m \times m} \) and \(R(t) \in \mathbb{R}^{n \times n} \). Show that \(A(t) \in \mathcal{M}_r \) for all \(t > 0 \) if \(A(0) \in \mathcal{M}_r \). Write down the differential equations for \(U, S, V \).

EFY. Consider the nonlinear matrix differential equation

\[
\dot{A} = F(A) := LA + AR + A \circ A,
\]

where \(\circ \) denotes the elementwise product. Develop an efficient method for evaluating \(F(A(t)) \) for \(A(t) \in \mathcal{M}_r \) when \(r \ll m, n \).
Dynamical low-rank approximation

For error analysis assume for $Y(t) := \mathcal{T}_r(A(t))$ that

- $\|F(Y(t))\|_F \leq \mu$, $\|F(X(t))\|_F \leq \mu$ for $t \in [0, T]$;
- $\langle F(Z_1) - F(Z_2), Z_1 - Z_2 \rangle \leq \lambda \|Z_1 - Z_2\|_F^2$ for all $Z_1, Z_2 \in \mathcal{M}_r$ and some fixed $\lambda \in \mathbb{R}$;
- $\|F(Y(t)) - F(A(t))\|_F \leq L \|Y(t) - A(t)\|_F$ for $t \in [0, T]$.

Theorem 6.1 in [Koch/Lubich’2007]:

Theorem

Under assumptions above, suppose that for $t \in [0, T]$ we have

- $\sigma_r(A(t)) > \sigma_{r+1}(A(t))$;
- $\|A(t) - \mathcal{T}_r(A(t))\|_F \leq \rho/16$ with $\rho = \min_{t \in [0, T]} \sigma_r(A(t))$.

Then, with $X(0) = \mathcal{T}_r(A(0))$, we have

$$\|X(t) - \mathcal{T}_r(A(t))\|_F \leq (2\beta + L)e^{(2\beta + \lambda)t} \int_0^t \|A(s) - \mathcal{T}_r(A(s))\|_F \, ds$$
Numerical integrators face severe problems as $\sigma_r \to 0$.
Unfortunately, $\sigma_r \approx 0$ is a very likely situation, as problems of interest typically feature quick singular value decay.
Regularization (i.e., increasing small singular values of S by $\epsilon > 0$) introduces additional errors whose effect is poorly understood.
Fundamental underlying problem: U, V ill-conditioned in the presence of small σ_r.
Idea by [Lubich/Oseledets’2014]: Splitting integrator that is insensitive to $\sigma_r \to 0$.
Projector-splitting integrator

Recall that

$$\dot{X}(t) = P_{X(t)}(\dot{A}(t)),$$

with

$$P_{X}(Z) = PUZPV + P_U^\perp ZPV + P_V^\perp ZPU$$

$$= ZVV^T - UU^T ZVV^T + UU^T Z$$

$$= ZP_{\text{range}(X^T)} - P_{\text{range}(X)} ZP_{\text{range}(X^T)} + P_{\text{range}(X)} Z.$$

One step of Lie-Trotter splitting integrator from t_0 to $t_1 = t_0 + h$ applied to this decomposition:

1. Solve $\dot{X}_I = \dot{A}P_{\text{range}(X_I^T)}$ on $[t_0, t_1]$ with i.v. $X_I(t_0) = X_0 \in \mathcal{M}_r$.

2. Solve $\dot{X}_{II} = -P_{\text{range}(X_{II})} \dot{A}P_{\text{range}(X_{II}^T)}$ on $[t_0, t_1]$ with i.v. $X_{II}(t_0) = X_I(t_1)$.

3. Solve $\dot{X}_{III} = P_{\text{range}(X_{III})} \dot{A}$ on $[t_0, t_1]$ with i.v. $X_{III}(t_0) = X_{II}(t_1)$.

Approximation returned: $X_1 := X_{III}(t_1)$.

Standard theory [Hairer/Lubich/Wanner’2006]:

Lie-Trotter splitting integrator has convergence order one.
Consider first step:
Rhs $\dot{AP}_{\text{range}(X_I^T)} \in T_{X_I} \mathcal{M}_r$ and hence $X_I \in \mathcal{M}_r$ for $t \in [t_0, t_1]$.

\leadsto factorization

$$X_I = U_I S_I V_I^T.$$

Differentiation \leadsto

$$\frac{1}{\partial t} (U_I S_I) V_I^T + U_I S_I \dot{V}_I^T = \dot{X}_I = \dot{A} V_I V_I^T.$$

Satisfied if

$$\frac{1}{\partial t} (U_I S_I) = \dot{A} V_I, \quad \dot{V}_I = 0.$$

In particular, primitive of $\dot{A} V_I$ is $A V_I$. In turn, this equation is solved by

$$U_I(t) S_I(t) = U_I(t_0) S_I(t_0) + (A(t) - A(t_0)) V_I(t_0).$$

Similar considerations for second and third step.
Projector-splitting integrator

Solution of three split equations given by

1. \(U_I(t)S_I(t) = U_I(t_0)S_I(t_0) + (A(t) - A(t_0))V_I(t_0), \)
2. \(S_{II}(t) = S_{II}(t_0) - U_{II}(t_0)^T(A(t) - A(t_0))^TV_{II}(t_0), \)
3. \(V_{III}(t)S_{III}(t)^T = V_{III}(t_0)S_{III}(t_0)^T + (A(t) - A(t_0))^TU_{III}(t_0), \)

Unassigned Quantities \((V_I, U_{II}, V_{II}, U_{III})\) remain constant.

Practical algorithm:

Given \(X_0 = U_0S_0V_0^T \) and with \(\Delta_A := A(t_1) - A(t_0) \), compute

1. QR factorization \(K_I = U_IS_I \) for \(K_I = U_0S_0 + \Delta_AV_0. \)
2. \(S_{II} = S_I - U_I^T\Delta_AV_0 \)
3. QR factorization \(L_{III} = V_{III}S_{III}^T \) for \(L_{III} = V_0S_{II}^T + \Delta_A^TU_I. \)

Returns \(U_1S_1V_1^T = U_IS_{III}V_{III}^T \).
Projector-splitting integrator

Remarks:

- KSL splitting is exact if $A(t)$ has rank at most r (Theorem 4.1 by Lubich/Oseledets) \implies robustness in presence of small singular value σ_r [Kieri/Lubich/Wallach’2016].
- Symmetrization (KSLSK) leads to second order.
- Splitting extends to $\dot{A} = F(A)$ by setting $\Delta_A := hF(Y_0)$ (but exactness result does not hold).
Further literature

- Extension to Tucker [Koch/Lubich’2010, Lubich/Vandereycken/Wallach’2018], tensor train [Lubich/Oseledets/Vandereycken’2015]
- [Kieri/Vandereycken’2017]: Conceptually simpler approach by combining standard integrators with low-rank truncation.