Randomized column/row sampling

Aim: Obtain rank-r approximation from randomly selected rows and columns of A.

Popular sampling strategies:
- Uniform sampling.
- Sampling based on row/column norms.
- Sampling based on more complicated quantities.
Preliminaries on randomized sampling

Exponential function example from Lecture 4 (Slide 14).

Comparison between best approximation, greedy approximation, approximation obtained by randomly selecting rows.
Preliminaries on randomized sampling

A simple way to fool uniformly random row selection:

\[U = \begin{pmatrix} 0_{(n-r) \times r} \\ I_r \end{pmatrix} \]

for \(n \) very large and \(r \ll n \).
Basic algorithm aiming at rank-\(r\) approximation:

1. Sample (and possibly rescale) \(k > r\) columns of \(A\) \(\sim m \times k\) matrix \(C\).
2. Compute SVD \(C = U\Sigma V^T\) and set \(Q = U_r \in \mathbb{R}^{m \times r}\).
3. Return low-rank approximation \(QQ^T A\).

- Can be combined with streaming algorithm [Liberty’2007] to limit memory/cost of working with \(C\).
- Quality of approximation crucially depends on sampling strategy.
Lemma
For any matrix $C \in \mathbb{R}^{m \times r}$, let Q be the matrix computed above. Then

$$\|A - QQ^T A\|_2^2 \leq \sigma_{r+1}(A)^2 + 2\|AA^T - CC^T\|_2.$$

Proof. We have

Hence,

$$\|A - QQ^T A\|_2^2 = \lambda_{\max}((A - QQ^T A)(A - QQ^T A)^T) \leq \lambda_{\max}((I - QQ^T)CC^T(I - QQ^T)) + \|AA^T - CC^T\|_2$$

$$= \sigma_{r+1}(C)^2 + \|AA^T - CC^T\|_2.$$

The proof is completed by applying Weyl’s inequality:

$$\sigma_{r+1}(C)^2 = \lambda_{r+1}(CC^T) \leq \lambda_{r+1}(AA^T) + \|AA^T - CC^T\|_2.$$
Random column sampling

Using the lemma, the goal now becomes to approximate the matrix product AA^T using column samples of A.

Notation:

$$A = \begin{bmatrix} a_1 & \cdots & a_n \end{bmatrix}, \quad C = \begin{bmatrix} c_1 & \cdots & c_k \end{bmatrix}$$

General sampling method:

Input: $A \in \mathbb{R}^{m \times n}$, probabilities $p_1, \ldots, p_n \neq 0$, integer k.

Output: $C \in \mathbb{R}^{m \times k}$ containing selected columns of A.

1. **for** $t = 1, \ldots, k$ **do**
2. Pick $j_t \in \{1, \ldots, n\}$ with $\mathbb{P}[j_t = \ell] = p_\ell$, $\ell = 1, \ldots, n$, independently and with replacement.
3. Set $c_t = a_{j_t} / \sqrt{kp_{j_t}}$.
4. **end for**
Random column sampling

Lemma
For the matrix C returned by algorithm, it holds that
\[
\mathbb{E}[CC^T] = AA^T, \quad \text{Var}[(CC^T)_{ij}] = \frac{1}{k} \sum_{\ell=1}^{n} \frac{a_{i\ell}^2 a_{j\ell}^2}{p_\ell} - \frac{1}{k} (AA^T)_{ij}^2.
\]

Proof. For fixed i, j, consider $X_t = (c_t c_t^T)_{ij} = \frac{1}{kp_{jt}} a_{i,jt} a_{j,jt}$, for which
\[
\mathbb{E}[X_t] = \sum_{\ell=1}^{n} p_\ell \frac{1}{kp_\ell} a_{i,\ell} a_{j,\ell} = \frac{1}{k} (AA^T)_{ij}.
\]
Analogously,
\[
\text{Var}(X_t) = \mathbb{E}[(X_t - \mathbb{E}[X_t])^2] = \mathbb{E}[X_t^2] - \mathbb{E}[X_t]^2 = \frac{1}{k^2} \sum_{\ell=1}^{n} \frac{a_{i\ell}^2 a_{j\ell}^2}{p_\ell} - \frac{1}{k^2} (AA^T)_{ij}^2.
\]
Because of independence, it follows $\mathbb{E}[\sum_t X_t] = k \cdot \mathbb{E}[X_t] = (AA^T)_{ij}$, and analogously for variance.
Random column sampling

As a consequence of the lemma,

\[
\mathbb{E}[\|AA^T - CC^T\|_F^2] = \sum_{ij} \mathbb{E}[(AA^T - CC^T)_{ij}^2] = \sum_{ij} \text{Var}[(CC^T)_{ij}]
\]

\[
= \frac{1}{k} \sum_{ij} \left(\sum_{\ell=1}^n \frac{a_{i\ell}^2 a_{j\ell}^2}{p_\ell} - \frac{1}{k} (AA^T)_{ij}^2 \right)
\]

\[
= \frac{1}{k} \left[\sum_{\ell=1}^n \frac{1}{p_\ell} \|a_\ell\|_2^4 - \|AA^T\|_F^2 \right].
\]

Lemma

The choice \(p_\ell = \|a_\ell\|_2^2 / \|A\|_F^2 \) minimizes \(\mathbb{E}[\|AA^T - CC^T\|_F^2] \) and yields

\[
\mathbb{E}[\|AA^T - CC^T\|_F^2] = \frac{1}{k} \left[\|A\|_F^4 - \|AA^T\|_F^2 \right]
\]

Proof. Established by showing that this choice of \(p_\ell \) satisfies first-order conditions of constrained optimization problem.
Random column sampling

Norm based sampling:

Input: \(A \in \mathbb{R}^{m \times n}, \) integer \(k.\)

Output: \(C \in \mathbb{R}^{m \times k} \) containing selected columns of \(A.\)

1. Set \(p_\ell = \| a_\ell \|_2^2 / \| A \|_F^2 \) for \(\ell = 1, \ldots, n.\)
2. **for** \(t = 1, \ldots, k \) **do**
 3. Pick \(j_t \in \{1, \ldots, n\} \) with \(\mathbb{P}[j_t = \ell] = p_\ell, \ell = 1, \ldots, n, \) independently and with replacement.
 4. Set \(c_t = a_{j_t} / \sqrt{kp_{j_t}}.\)
5. **end for**

5. Compute SVD \(C = U \Sigma V^T \) and set \(Q = U_r \in \mathbb{R}^{m \times r}.\)
5. Return low-rank approximation \(Q Q^T A.\)
Random column sampling

Lemma

For the matrix C returned by algorithm, it holds with probability $1 - \delta$ that

$$\|AA^T - CC^T\|_F \leq \frac{\eta}{\sqrt{k}} \|A\|_F,$$

where $\eta = 1 + \sqrt{8 \cdot \log(1/\delta)}$.

Proof. Aim at applying Azuma-Hoeffding inequality. Define

$$F(i_1, i_2, \ldots, i_k) = \|AA^T - CC^T\|_F,$$

with $C = \begin{bmatrix} a_{i_1} & \cdots & a_{i_k} \end{bmatrix}$. Quantify the effect of varying an index (w.l.o.g. the first one) on F:

$$|F(i_1, i_2, \ldots, i_k) - F(i'_1, i_2, \ldots, i_k)| = \|AA^T - CC^T\|_F - \|AA^T - C'C'^T\|_F \leq \|CC^T - C'C'^T\|_F \leq \frac{1}{kp_{i_1}} \|a_{i_1}\|_2^2 + \frac{1}{kp_{i_1'}} \|a_{i_1'}\|_2^2 \leq \frac{2}{k} \|A\|_F^2 := \Delta.$$
Random column sampling

This implies that Doob martingales \(g_\ell = \mathbb{E}[f(i_1, \ldots, i_k) | i_1, \ldots, i_\ell] \) for \(1 \leq \ell \leq k \) satisfy

\[
|g_{\ell+1} - g_\ell| \leq \Delta.
\]

Note that \(g_k = \mathbb{E}[\|AA^T - CC^T\|_F] \). By lemma and Jensen’s inequality we know that \(g_k \leq \|A\|_F^2 / \sqrt{k} \). Applying Azuma-Hoeffding inequality to \(g_k \) yields

\[
P[\|AA^T - CC^T\|_F \geq \|A\|_F^2 / \sqrt{k} + \gamma] \leq \exp(-\gamma^2 / 2k\Delta^2) =: \delta.
\]

Setting \(\gamma = \sqrt{8 \cdot \log(1/\delta)} \) completes the proof.
Random column sampling

Theorem (Drineas/Kannan/Mahoney’2006)

For the matrix Q returned by the algorithm above it holds that

$$
\mathbb{E}\left[\|A - QQ^T A\|_2^2\right] \leq \sigma_{r+1}^2(A) + \epsilon \|A\|_F^2 \text{ for } k \geq 4/\epsilon^2.
$$

With probability at least $1 - \delta$,

$$
\|A - QQ^T A\|_2^2 \leq \sigma_{r+1}^2(A) + \epsilon \|A\|_F^2 \text{ for } k \geq 4\left(1 + \sqrt{8 \cdot \log(1/\delta)}\right)^2/\epsilon^2.
$$

Proof. Follows from combining very first lemma with last two lemmas.

Remarks:

▶ Dependence of k on ϵ pretty bad. Unlikely to achieve something significantly better without assuming further properties of A (e.g., incoherence of singular vectors) with sampling based on row norms only.

▶ Simple “counter example”:

$$
A = \left(\frac{1}{\sqrt{n}} e_1 \quad \frac{1}{\sqrt{n}} e_1 \quad \cdots \quad \frac{1}{\sqrt{n}} e_1 \quad \frac{1}{\sqrt{n}} e_2\right) \in \mathbb{R}^{n \times (n+1)}.
$$
Random column sampling

[Drineas/Mahoney/Muthukrishnan’2007]: Let V_k contain k dominant right singular vectors of A. Setting

$$p_\ell = \|V_k(\ell,:)\|_2^2/k, \quad \ell = 1, \ldots, n$$

and sampling $O(k^2(\log 1/\delta)/\varepsilon^2)$ columns\(^1\) yields

$$\|A - QQ^T A\|_F \leq (1 + \varepsilon)\|A - T_k(A)\|_F$$

with probability $1 - \delta$.

Relative error bound!
CUR decomposition can be obtained by applying ideas to rows and columns (yielding R and C, respectively) and choosing U appropriately.

\(^1\)There are variants that improve this to $O(k \log k \log(1/\delta)/\varepsilon^2)$.